Câu b hình như sai đề..
Câu a:
\(\dfrac{52}{9}=5+\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c}}}\)
\(\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c}}}=\dfrac{52}{9}-5\)
\(\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c}}}=\dfrac{7}{9}\)
\(\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c}}}=\dfrac{1}{\dfrac{9}{7}}\)
\(a+\dfrac{1}{b+\dfrac{1}{c}}=\dfrac{9}{7}\)
Vì \(\dfrac{1}{b+\dfrac{1}{c}}< 1\) , nên a phải lớn nhất có thể. Mà a là số tự nhiên,\(a< \dfrac{9}{7}\) nên a = 1.
Khi đó:
\(\dfrac{1}{b+\dfrac{1}{c}}=\dfrac{9}{7}-1\)
\(\dfrac{1}{b+\dfrac{1}{c}}=\dfrac{2}{7}\)
\(\dfrac{1}{b+\dfrac{1}{c}}=\dfrac{1}{\dfrac{7}{2}}\)
\(b+\dfrac{1}{c}=\dfrac{7}{2}\)
Vì \(\dfrac{1}{c}< 1\) nên b phải lớn nhất có thể. Mà b là số tự nhiên,\(b< \dfrac{7}{2}\) nên b = 3.
Khi đó:
\(\dfrac{1}{c}=\dfrac{7}{2}-3\)
\(\dfrac{1}{c}=\dfrac{1}{2}\)
Suy ra c=2.
Vậy a=1, b=3 , c=2.