a)3x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=13x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=1
b)2x+y−1=(x+2y−5)i⇔{2x+y−1=0x+2y−5=0⇔{x=−1y=3
a)3x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=13x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=1
b)2x+y−1=(x+2y−5)i⇔{2x+y−1=0x+2y−5=0⇔{x=−1y=3
Giải các phương trình sau trên tập số phức :
a) \(3x^2+\left(2+2i\sqrt{2}\right)x-\dfrac{\left(1+i\right)^3}{1-i}=i\sqrt{8}x\)
b) \(\left(1-ix\right)^2+\left(3+2i\right)x-5=0\)
Thực hiện các phép tính :
a) \(\left(2+3i\right)^2-\left(2-3i\right)^2\)
b) \(\dfrac{\left(1+i\right)^5}{\left(1-i\right)^3}\)
Giá trị nhỏ nhất của biểu thức F=y-x trên miền xác định bởi hệ \(\left[{}\begin{matrix}y-2x\le2\\2y-x\ge\\x+y\le5\end{matrix}\right.4\)
Thực hiện các phép tính :
a) \(\left(2+3i\right)\left(3-i\right)+\left(2-3i\right)\left(3+i\right)\)
b) \(\dfrac{2+i\sqrt{2}}{1-i\sqrt{2}}+\dfrac{1+i\sqrt{2}}{2-i\sqrt{2}}\)
c) \(\dfrac{\left(1+i\right)\left(2+i\right)}{2-i}+\dfrac{\left(1+i\right)\left(2-i\right)}{2+i}\)
Thực hiện các phép tính sau :
a) \(\left(3+2i\right)\left(2-i\right)+\left(3-2i\right)\)
b) \(\left(4-3i\right)+\dfrac{1+i}{2+i}\)
c) \(\left(1+i\right)^2-\left(1-i\right)^2\)
d) \(\dfrac{3+i}{2+i}-\dfrac{4-3i}{2-i}\)
Giải phương trình sau trên tập số phức :
a) \(\left(1+2i\right)x-4\left(4-5i\right)=-7+3i\)
b) \(\left(3+2i\right)x-6ix=\left(1-2i\right)\left[x-\left(1+5i\right)\right]\)
Trên mặt phẳng Oxy, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left|z-i\right|=\left|\left(1+i\right)z\right|\)
Áp dụng các hằng đẳng thức đáng nhớ để tính :
a) \(\left(2+i\sqrt{3}\right)^2\)
b) \(\left(1+2i\right)^3\)
c) \(\left(3-i\sqrt{2}\right)^3\)
d) \(\left(2-i\right)^3\)
Tìm phần ảo của số phức \(z\), biết \(\overline{z}=\left(\sqrt{2}+i\right)^2\left(1-i\sqrt{2}\right)\)