Thực hiện các phép tính :
a) \(\left(2+3i\right)\left(3-i\right)+\left(2-3i\right)\left(3+i\right)\)
b) \(\dfrac{2+i\sqrt{2}}{1-i\sqrt{2}}+\dfrac{1+i\sqrt{2}}{2-i\sqrt{2}}\)
c) \(\dfrac{\left(1+i\right)\left(2+i\right)}{2-i}+\dfrac{\left(1+i\right)\left(2-i\right)}{2+i}\)
Thực hiện các phép tính sau :
a) \(\left(3+2i\right)\left(2-i\right)+\left(3-2i\right)\)
b) \(\left(4-3i\right)+\dfrac{1+i}{2+i}\)
c) \(\left(1+i\right)^2-\left(1-i\right)^2\)
d) \(\dfrac{3+i}{2+i}-\dfrac{4-3i}{2-i}\)
Giải các phương trình sau trên tập số phức :
a) \(\left(3+4i\right)z+\left(1-3i\right)=2+5i\)
b) \(\left(4+7i\right)z-\left(5-2i\right)=6iz\)
Giải các phương trình sau trên tập số phức :
a) \(3x^2+\left(2+2i\sqrt{2}\right)x-\dfrac{\left(1+i\right)^3}{1-i}=i\sqrt{8}x\)
b) \(\left(1-ix\right)^2+\left(3+2i\right)x-5=0\)
Giải phương trình sau trên tập số phức :
a) \(\left(1+2i\right)x-4\left(4-5i\right)=-7+3i\)
b) \(\left(3+2i\right)x-6ix=\left(1-2i\right)\left[x-\left(1+5i\right)\right]\)
Áp dụng các hằng đẳng thức đáng nhớ để tính :
a) \(\left(2+i\sqrt{3}\right)^2\)
b) \(\left(1+2i\right)^3\)
c) \(\left(3-i\sqrt{2}\right)^3\)
d) \(\left(2-i\right)^3\)
Tìm các số thực x, y sao cho :
a) \(3x+yi=2y+1+\left(2-x\right)i\)
b) \(2x+y-1=\left(x+2y-5\right)i\)
Tìm số phức \(z\), biết : \(z-\left(2+3i\right)\overline{z}=1-9i\)
Tìm phần ảo của số phức \(z\), biết \(\overline{z}=\left(\sqrt{2}+i\right)^2\left(1-i\sqrt{2}\right)\)