Tìm số nguyên x sao cho: \(x^3-3x^2+x+2\) là số chính phương
Cho x,y nguyên dương biết x^2+3y và y^2+3x là số chính phương
Tìm các số đó
Tìm số nguyên tố p,q sao cho \(p^2+3pq+q^2\) là số chính phương
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
tìm số nguyên tố p và các số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm số thực x để 3 số x-√3;x^2+2√3;x-2/x là số nguyên