Ta có :
\(a^2-2b^2=1\\ \Leftrightarrow a^2-1=2b^2\\ \Leftrightarrow\left(a+1\right)\left(a-1\right)=2b^2\)
Mà b là số nguyên tố nên :
\(\left(a+1\right)\left(a-1\right)=2\cdot b\cdot b\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1=2b\\a+1=b\end{matrix}\right.\\\left\{{}\begin{matrix}a+1=2b\\a-1=b\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-3\left(loại\right)\\b=-2\left(Loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\left(t/m\right)\\b=2\left(t/m\right)\end{matrix}\right.\end{matrix}\right.\)
⇒ a = 3 ; b = 2
Vậy ............