Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Linh

Tìm các số hữu tỉ a,b,c biết:

a, ab = \(\dfrac{3}{5},bc=\dfrac{4}{5},ca=\dfrac{3}{4}\)

b, a.(a + b + c) = -12 và b.(a + b + c) = 18 và c.(a + b + c) = 30

c, ab = c, bc = 4a, ac = 9b

Phạm Ngân Hà
28 tháng 7 2017 lúc 16:11

a) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ca=\dfrac{3}{4}\)

\(\Leftrightarrow ab.bc.ca=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}\)

\(\Leftrightarrow a^2.b^2.c^2=\dfrac{9}{25}\)

\(\Leftrightarrow\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2=\left(-\dfrac{3}{5}\right)^2\)

+ Khi \(\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2\Leftrightarrow abc=\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\)

+ Khi \(\left(abc\right)^2=\left(-\dfrac{3}{5}\right)^2\Leftrightarrow abc=-\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\left(-\dfrac{3}{5}\right):\dfrac{4}{5}=-\dfrac{3}{4}\\b=\left(-\dfrac{3}{5}\right):\dfrac{3}{4}=-\dfrac{4}{5}\\c=\left(-\dfrac{3}{5}\right):\dfrac{3}{5}=-1\end{matrix}\right.\)

b) \(a\left(a+b+c\right)=-12;b\left(a+b+c\right)=18;c\left(a+b+c\right)=30\)

\(\Leftrightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(-12\right)+18+30\)

\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)

+ Khi \(\left(a+b+c\right)^2=6^2\Leftrightarrow a+b+c=6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):6=-2\\b=18:6=3\\c=30:6=5\end{matrix}\right.\)

+ Khi \(\left(a+b+c\right)^2=\left(-6\right)^2\Leftrightarrow a+b+c=-6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):\left(-6\right)=2\\b=18:\left(-6\right)=-3\\c=30:\left(-6\right)=-5\end{matrix}\right.\)

c) \(ab=c;bc=4a;ac=9b\)

Kiểm tra lại đề bài xem có thiếu điều kiện không.

Phạm Ngân Hà
28 tháng 7 2017 lúc 16:22

Cứ theo khẳng định của Nguyễn Thị Ngọc Linh thì đề c) không thiếu gì. Xin giải tiếp.

c) \(ab=c;bc=4a;ac=9b\)

\(\Leftrightarrow ab.bc.ac=c.4a.9b\)

\(\Leftrightarrow\left(abc\right)\left(abc\right)=36\left(abc\right)\)

\(\Leftrightarrow abc=36\)

+ Vì \(ab=c\Leftrightarrow cc=36\Leftrightarrow c^2=6^2=\left(-6\right)^2\)

+ Vì \(bc=4a\Leftrightarrow a.4a=36\Leftrightarrow4a^2=36\Leftrightarrow a^2=9=3^2=\left(-3\right)^2\)

+ Vì \(ac=9b\Leftrightarrow b.9b=36\Leftrightarrow9b^2=36\Leftrightarrow b^2=4=2^2=\left(-2\right)^2\)

Vậy \(\left\{{}\begin{matrix}a_1=3;a_2=-3\\b_1=2;b_2=-2\\c_1=6;c_2=-6\end{matrix}\right.\)


Các câu hỏi tương tự
Trần Thị Hảo
Xem chi tiết
Trương  quang huy hoàng
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Thư Nguyễn Nguyễn
Xem chi tiết
Chibi Trần
Xem chi tiết
ĐỨC TRỌNG
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Minh Tuấn
Xem chi tiết
Giúp Với
Xem chi tiết