xác định các số hữu tỉ a,b,c,d sao cho:
a,\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{a}{x\left(x+1\right)}+\frac{b}{\left(x+1\right)\left(x+2\right)}\)
b,\(\frac{x^3}{x^4-1}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}\)
c,\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{x-2}\)
Giải các phương trình sau
a) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
b) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
c) \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
d) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
e) \(\frac{1}{x-2}+\frac{5}{x+1}=\frac{3}{2-x}\)
f) \(\frac{5x}{2x+2}+1=-\frac{6}{x+1}\)
g) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
h) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
Giải phương trình:
a,\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
b,\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+c\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Giúp hộ!!!
1 Giari các PT:
a, \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x-1\right)\left(x-2\right)}\)
b, \(\left(\frac{3}{2x+1}+2\right)\left(5x-2\right)=\frac{5x-2}{2x+1}\)
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
Bài 1: Giải các phương trình:
a) \(x+\frac{2x-1}{1-x}=-1\)
b) \(x+\frac{1}{x}=2\)
Bài 2: Giải các phương trình:
a) \(\frac{x}{x-2}=\frac{x-2}{x-3}\)
b) \(\frac{2x-4}{x-1}-\frac{x-3}{x-2}=1\)
c) \(\frac{x+3}{x-1}-\frac{3}{X-1}+\frac{x^2-2}{1-x^2}=0\)
d) \(\frac{2x+1}{x-3}-\frac{3}{x-2}=2\)
Bài 3: Giải các phương trình sau:
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{1}{x+2}\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\)
d) \(\frac{x-1}{x+2}-\frac{x+1}{x-2}=\frac{x-3}{4-x^2}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Câu 1: Giải phương trình:
a) \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\) (x là ẩn số)
b) \(\frac{\left(b-x\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
(a,b,c là hằng số và đôi một khác nhau)