Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)
Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?
Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)
Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
tìm m để đồ thị hàm số :
1) \(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cực đại tại x=1
2) \(y=x^4-\left(m+1\right)x^{2^{ }}+1\) đạt cực tiểu tại x=-1
cho hàm số \(y=\dfrac{mx^2+\left(m+2\right)x+5}{x^2+1}\). gọi S là tập hợp các giá trị của m sao cho đồ thị hàm số đã cho có đúng hai điểm cực trị và đường thẳng nối hai điểm cực trị của đồ thị hàm số cắt hai trục tọa độ tạo thành một tam giác có diện tích = \(\dfrac{25}{4}\). tính tổng các phần tử của S
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
Giúp em giải chi tiết với ạ~
Cho hàm số y = x3-3x2+mx . Tìm m để đồ thị hàm số có cực đại và cực tiểu nằm về cùng một phía đường thẳng : x-2y-5=0
Cho \(y = \dfrac{x^2 + (m + 2)x + 3m + 2}{x + 1}\). Tìm \(m\) để hàm số có cực đại, cực tiểu và \(y_{CĐ}^2 + y_{CT}^2 > \dfrac{1}{2}\).
Đại ca, Đại tỉ nào giúp muội muội này với... Làm hoài ko ra ( câu b ạ)
Cho hàm số \(y=x^3+mx^2-1\).
a) Chứng minh rằng hàm số trên luôn có cực đại, cực tiểu với mọi m khác 0.
b) CMR đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của m.
c)Tìm m để phương trình \(x^3+mx^2-1=0\) có ba nghiệm phân biệt.
Tìm m để đồ thị hàm số y=\(\left(m+1\right)x^4-mx^2+\frac{3}{2}\)chỉ có cực tiểu không có cực đại