Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Hằng

Tìm các nguyên hàm sau

1.\(\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

2.\(\int\frac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^3}dx\)

3.\(\int\frac{x}{\sqrt{2x+3}}dx\)

4.\(\int\) \(\frac{e^{2x}}{\sqrt{1+e^x}}\) dx

5.\(\int\frac{\sqrt[3]{1+lnx}}{x}dx\)

6.\(\int\) cosxsin3xdx

7.\(\int\) (x2+2x-1)exdx

8.\(\int\) excosxdx

9.\(\int\) xsin(2x+1)dx

10.\(\int\) (1-2x)e3xdx

Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:21

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:27

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:31

Từ phần này trở đi mới bắt đầu xài nguyên hàm từng phần:

g/ \(I=\int\left(x^2+2x-1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=x^2+2x-1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+2\right)dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-\int\left(2x+2\right)e^xdx\)

Xét \(J=\int\left(2x+2\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+2\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow J=\left(2x+2\right)e^x-\int2e^xdx=\left(2x+2\right)e^x-2e^x+C=2x.e^x+C\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-2x.e^x+C=\left(x^2-1\right)e^x+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:34

h/ \(I=\int e^xcosx.dx\)

Đặt \(\left\{{}\begin{matrix}u=cosx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=e^x.cosx+\int e^xsinx.dx\)

Xét \(J=\int e^xsinx.dx\)

Đặt \(\left\{{}\begin{matrix}u=sinx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=cosxdx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow J=e^x.sinx-\int e^x.cosxdx=e^xsinx-I\)

\(\Rightarrow I=e^xcosx+e^xsinx-I\)

\(\Rightarrow2I=e^x\left(sinx+cosx\right)\Rightarrow I=\frac{1}{2}e^x\left(sinx+cosx\right)+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:38

k/ \(I=\int x.sin\left(2x+1\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-\frac{1}{2}cos\left(2x+1\right)\end{matrix}\right.\)

\(\Rightarrow I=-\frac{1}{2}x.cos\left(2x+1\right)+\frac{1}{2}\int cos\left(2x+1\right)dx\)

\(=-\frac{1}{2}x.cos\left(2x+1\right)+\frac{1}{4}sin\left(2x+1\right)+C\)

l/ \(I=\int\left(1-2x\right)e^{3x}dx\)

Đặt \(\left\{{}\begin{matrix}u=1-2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-2dx\\v=\frac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\frac{1}{3}\left(1-2x\right)e^{3x}+\frac{2}{3}\int e^{3x}dx=\frac{1}{3}\left(1-2x\right)e^{3x}+\frac{2}{9}e^{3x}+C\)

Khách vãng lai đã xóa
Trần Thị Hằng
24 tháng 11 2019 lúc 17:43
https://i.imgur.com/QzpYulo.jpg
Khách vãng lai đã xóa

Các câu hỏi tương tự
Phan thu trang
Xem chi tiết
Phan thu trang
Xem chi tiết
Phan thu trang
Xem chi tiết
Hùng
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hùng
Xem chi tiết
Guyo
Xem chi tiết
Phan thu trang
Xem chi tiết