a) \(\sqrt{\dfrac{1}{x+2}}\) có nghĩa \(\Leftrightarrow\dfrac{1}{x+2}>0\Leftrightarrow x+2>0\Leftrightarrow x>-2\) vậy \(x>-2\)
b) \(\sqrt{\dfrac{1}{x-1}}\) có nghĩa \(\Leftrightarrow\dfrac{1}{x-1}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\) vậy \(x>1\)
c) \(\sqrt{5-x^2}\) \(\Leftrightarrow5-x^2\ge0\Leftrightarrow x^2\le5\Leftrightarrow-\sqrt{5}\le x\le\sqrt{5}\)
vậy \(-\sqrt{5}< x< \sqrt{5}\)
d) \(\sqrt{x^2}-2\) có nghĩa \(\Leftrightarrow x^2\ge0\) (đúng với mọi x) vậy biểu thức này luôn tồn tại
e) \(\dfrac{1}{\sqrt{2x-x^2}}\) có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x\in\varnothing\end{matrix}\right.\)
vậy \(0< x< 2\)