Trước hết chúng ta cần biết tính chất sau:
Cho 4 số tự nhiên \(x;y;z;t>1\) trong đó x, y nguyên tố cùng nhau, z, t nguyên tố cùng nhau thì \(\left[{}\begin{matrix}x=z;y=t\\x=t;y=z\end{matrix}\right.\)
- Nếu \(a=0\Rightarrow b\left(1001b-1\right)=0\Rightarrow b=0\)
Nếu \(b=0\Rightarrow a\left(1000a-1\right)=0\Rightarrow a=0\)
- Nếu \(a=1\Rightarrow1001b^2-b-999=0\Rightarrow\) ko có \(b\in N\) thỏa mãn
Nếu \(b=1\Rightarrow1000a^2-a-1000=0\Rightarrow\) ko có \(a\in N\) thỏa mãn
- Nếu \(a;b>1\):
\(1000a^2-a=1001b^2-b\Leftrightarrow a\left(1000a-1\right)=b\left(1001b-1\right)\)
Dễ dàng chứng minh \(a\) và \(1000a-1\) nguyên tố cùng nhau; \(b\) và \(1001b-1\) nguyên tố cùng nhau
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=b\\1000a-1=1001b-1\end{matrix}\right.\\\left\{{}\begin{matrix}a=1001b-1\\1000a-1=b\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=b\\1000a=1001b\end{matrix}\right.\\\left\{{}\begin{matrix}a=1001b-1\\1000\left(1001b-1\right)=b\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1000b=1001b\\1000000b=1000\end{matrix}\right.\) \(\Rightarrow\) ko có \(a;b>1\) thỏa mãn
Vậy cặp số tự nhiên duy nhất thỏa mãn điều kiện là \(a=b=0\)