a2 -2a+b2+4b+4c2-4c+6=0
<=>(a2-2a+1)+(b2+4b+4)+(4c2-4c+1)=0
<=>(a-1)2+(b+2)2+(2c-1)2=0
\(\left[{}\begin{matrix}a-1=0\\b+2=0\\2c-1=0\end{matrix}\right.\left[{}\begin{matrix}a=1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: \(a^2-2a+b^2+4b+4c^2-4c+6=\)
\(=\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)= 0
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\left(\forall a;b;c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a-1\right)^2=0;\left(b+2\right)^2=0;\left(2c-1\right)^2=0\)
\(\Leftrightarrow a=1;b=-2;c=\dfrac{1}{2}\)