Cho 3 số thực dương a,b,c thõa mãn 1/a+1/b+1/c =1.
Chứng minh rằng: a^2/(a+bc) + b^2/( b+ac)+ c^2/(c+ab)>= (a+b+c)_4
cho a,b,c là các số thụcx dương thỏa mãn abc=1.CMR
\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
tìm a để biểu thức có nghĩa:
a) \(\sqrt{\dfrac{-a}{3}}\)
b) \(-\sqrt{\dfrac{1}{a^2}}\)
c) \(\sqrt{\dfrac{\left(1-a\right)^3}{a^2}}\)
d) \(\sqrt{\dfrac{a^{2^{ }}+1}{1-2a}}\)
e) \(\sqrt{a^2-1}\)
f) \(\sqrt{\dfrac{2a-1}{2-a}}\)
Cho a,b,c là các số thực dương. Chứng minh \(T=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+b+a}\le\frac{3}{5}\)
Cho p= √x+1/√x-1 a) So sánh p và √p b) Tìm x để 1/p thuộc z
Cho các số thực dương a,b,c. Chứng minh rằng:
\(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
Cho a;b là hai số dương thỏa mãn : \(a^2+b^2=6\) CM rằng \(\sqrt{3\left(a^2+6\right)}\) \(\geq\) \(\left(a+b\right)\sqrt{2}\)
Tìm x để biểu thức sau được xác định :
a) \(\sqrt{\left|x\right|-1}\)
b) \(\sqrt{-\left|x+5\right|}\)
c_ \(\sqrt{\left|x-1\right|-3}\)
cho hệ pt \(\left\{{}\begin{matrix}x-ay=1\\ax+y=2\end{matrix}\right.\)
1, giải hệ pt khi a=2
2,chứng minh hệ đã cho luôn có nghiệm
3, xác định a để hệ có nghiệm dương