\(f'\left(x\right)=x^2+2x+3a;g'\left(x\right)=x^2-x+a\)
Ta cần tìm a sao cho g'(x) có 2 nghiệm phân biệt \(x_1\)<\(x_2\) và f'(x) có 2 nghiệm phân biệt \(x_3\)<\(x_4\) sao cho
\(x_1\) <\(x_3\)<\(x_2\) <\(x_4\) và \(x_3\)<\(x_1\)<\(x_4\) <\(x_2\) => \(\begin{cases}\Delta'_1=1-3a>0;\Delta'_2=1-4a>0\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\)
\(\Leftrightarrow\begin{cases}a<\frac{1}{4}\\f'\left(x_1\right)f'\left(x_2\right)<0\end{cases}\) (*)Ta có : \(f'\left(x_1\right)f'\left(x_2\right)<0\) \(\Leftrightarrow\left[g'\left(x_1\right)+3x_1+2a\right]\left[g'\left(x_2\right)+3x_2+2a\right]<0\) \(\Leftrightarrow\left(3x_1+2a\right)\left(3x_2+2a\right)<0\) \(\Leftrightarrow9x_1x_2+6a\left(x_1+x_2\right)+4a^2=a\left(4a+15\right)<0\) \(\Leftrightarrow-\frac{15}{4}\)<a<0