Lời giải:
Để 2 đths $y=ax+b$ tiếp xúc với cả 2 parabol đã cho thì 2 pt hoành độ giao điểm : \(\left\{\begin{matrix} ax+b=8-3x-2x^2\\ ax+b=2+9x-2x^2\end{matrix}\right.\) đều có nghiệm duy nhất
\(\Leftrightarrow \left\{\begin{matrix} 2x^2+x(a+3)+(b-8)=0(1)\\ 2x^2+x(a-9)+(b-2)=0(2)\end{matrix}\right.\) cả 2 đều có nghiệm duy nhất
Điều này xảy ra khi mà:
\(\Delta_1=(a+3)^2-8(b-8)=0\)
\(\Delta_2=(a-9)^2-8(b-2)=0\)
Trừ theo vế ta thu được \(24a-24=0\Rightarrow a=1\Rightarrow b=10\)
Vậy $(a,b)=(1,10)$