Vì đồ thị hàm số đi qua điểm A(-2;7) nên ta có:
4a-2b+c=7 (1)
Vì đồ thị hàm số đi qua điểm B(3;2) nên ta có:
4a+2b+c=2 (2)
Giá trị nhỏ nhất là -2 => \(\dfrac {-b^2+4ac}{4a}\)=-2
<=>-8a+\(b^2\)-4ac=0 (3) (a khác 0)
Lấy (1) trừ (2) ta có:
b= \(\dfrac {-5}{4}\) thay vào (1) ta có:
(1) 4a+\(\dfrac {5}{2}\)+c=7
<=>4a+c=4.5
<=> c=4.5-4a
thay b và c vừa tìm vào (3) ta có:
\(16a^2 \) -26a+\(\dfrac {25}{16}\) =0
=> a=25/16
hoặc a=1/16
=> c =13/4
hoặc a=37/4