\(a=x^{2n};b=x^{2n-1}\Rightarrow\frac{a}{b}=x\)
\(\left(2.a+3b\right)\left(\frac{1}{b}-\frac{3x^2}{a}\right)=\left(2x-6x^2+3-9x\right)=-\left(6x^2+7x-3\right)\)
Hai dòng giống nhau chẳng hiểu%
\(a=x^{2n};b=x^{2n-1}\Rightarrow\frac{a}{b}=x\)
\(\left(2.a+3b\right)\left(\frac{1}{b}-\frac{3x^2}{a}\right)=\left(2x-6x^2+3-9x\right)=-\left(6x^2+7x-3\right)\)
Hai dòng giống nhau chẳng hiểu%
Làm tính nhân: a. \(\left(3x^{2m-1}-\dfrac{3}{7}y^{3n-5}+x^{2m}y^{3m}-3y^2\right)8x^{3-2m}y^{6-3n}\)
b.\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)\)
1) \(\left(\dfrac{-3}{4}\right)^{3x+1}=\dfrac{81}{256}\) 6) \(\left(8x-1\right)^{2n-4}=5^{2n-4}\)
2) \(172.x^2-\dfrac{7^9}{98^3}=\dfrac{1}{2^3}\) 7) \(\left(\dfrac{1}{2x}-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
3) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
4) \(\left(x+2\right)^2+\left(y-\dfrac{1}{10}\right)^2=0\)
5) \(\left(x-7\right)^{n+1}-\left(x-7\right)^{n+11}=0\)
Giúp mk với!!!!!
Chứng minh rằng: \(\left(x^{4n+2}+2x^{2n+1}+1\right)⋮\left(x^2+2x+1\right)\)
Cho A = \(\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{3.\left(2n-3\right)}+\dfrac{1}{1.\left(2n-1\right)}\); B = \(1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\). Tính \(\dfrac{A}{B}\)
cho
A=\(\dfrac{1}{1\left(2n-1\right)}+\dfrac{1}{3\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right)3}+\dfrac{1}{\left(2n-1\right)1}\)
B=\(1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\)
tính \(\dfrac{A}{B}\)
Chứng minh rằng: \(x^{4n+2}+2x^{2n+1}+1⋮\left(x+1\right)^2\)
Chứng minh rằng: \(x^{4n+2}+2x^{2n+1}+1⋮\left(x+1\right)^2\)
Chứng minh rằng: \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\) (n thuộc N)
CMR: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N