\(\begin{array}{l}a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}} = \\ = \dfrac{{\left( {{x^3} + 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 2{\rm{x}} + 1} \right).\left( {{x^2} - x + 1} \right)}}\\ = \dfrac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}.\left( {{x^2} - x + 1} \right)}} = \dfrac{{x + 1}}{{x - 1}}\end{array}\)
\(\begin{array}{l}b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\\ = \dfrac{{\left( {{x^2} - 4{\rm{x}} + 4} \right).2}}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \dfrac{{{{\left( {x - 2} \right)}^2}.2}}{{3{\rm{x}}\left( {x - 2} \right)}} = \dfrac{{2\left( {x - 2} \right)}}{{3{\rm{x}}}}\end{array}\)