Giải:
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\)
\(\Leftrightarrow\dfrac{1}{3}B=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}...+\dfrac{1}{3^{2005}}+\dfrac{1}{3^{2006}}\)
\(\Leftrightarrow B-\dfrac{1}{3}B=\dfrac{1}{3}-\dfrac{1}{3^{2006}}\)
\(\Leftrightarrow\dfrac{2}{3}B=\dfrac{1}{3}-\dfrac{1}{3^{2006}}\)
\(\Leftrightarrow B=\dfrac{\dfrac{1}{3}-\dfrac{1}{3^{2006}}}{\dfrac{2}{3}}\)
\(\Leftrightarrow B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\)
\(\Leftrightarrow B=\dfrac{\dfrac{3^{2005}-1}{3^{2005}}}{2}\)
\(\Leftrightarrow B=\dfrac{3^{2005}-1}{2.3^{2005}}\)
Vậy ...