a/ \(\dfrac{4x+2}{3x^2-x}:\dfrac{x^2+3x}{1-3x}=-\dfrac{4x+2}{x\left(1-3x\right)}\cdot\dfrac{1-3x}{x^2+3x}=-\dfrac{4x^2+2}{x\left(x^2+3x\right)}\)
b/ \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2-12xy+9y^2}{1-x^2}=-\dfrac{2\left(2x+3y\right)}{1-x}\cdot\dfrac{\left(1-x\right)\left(1+x\right)}{\left(2x+3y\right)^2}=\dfrac{-2\left(x+1\right)}{2x+3y}=\dfrac{-2x-2}{2x+3y}\)
c/ \(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}\cdot\dfrac{2x+y}{x\left(x^2+xy+y^2\right)}=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y}\cdot\dfrac{1}{x\left(x^2+xy+y^2\right)}=\dfrac{x-y}{y}\)