a) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{\left(2x+y\right)\left(2x+y\right)-8yx+\left(2x-y\right)\left(2x-y\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
b) \(\dfrac{1}{x^2+3x+2}+\dfrac{2x}{x^2+4x+3}+\dfrac{1}{x^2+5x+6}\)
\(=\dfrac{1}{x^2+x+2x+2}+\dfrac{2x}{x^2+x+3x+3}+\dfrac{1}{x^2+2x+3x+6}\)
\(=\dfrac{1}{x\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{x\left(x+1\right)+3\left(x+1\right)}+\dfrac{1}{x\left(x+2\right)+2\left(x+2\right)}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x\left(x+2\right)+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x^2+4x+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2}{x+3}\)