a) Chuyển hạng tử tự do của phương trình sang vế phải ta được phương trình \(2{x^2} - 8x = - 3\).
b) Chia cả hai vế của phương trình cho hệ số của \({x^2}\) ta được: \({x^2} - 4x = \frac{{ - 3}}{2}\).
c) \({x^2} - 4x = \frac{{ - 3}}{2}\)
\({x^2} - 4x + 4 = \frac{{ - 3}}{2} + 4\)
\({\left( {x - 2} \right)^2} = \frac{5}{2}\)
\(x - 2 = \frac{{\sqrt {10} }}{2}\) hoặc \(x - 2 = - \frac{{\sqrt {10} }}{2}\)
\(x = 2 + \frac{{\sqrt {10} }}{2}\) \(x = 2 - \frac{{\sqrt {10} }}{2}\)
Vậy phương trình có hai nghiệm \(x = 2 + \frac{{\sqrt {10} }}{2}\); \(x = 2 - \frac{{\sqrt {10} }}{2}\).
Đúng 0
Bình luận (0)