a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
SUy ra: BN=CM
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
SUy ra: BN=CM
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Không cần vẽ hình (mk đã vẽ hình rồi), chỉ cần làm câu a, câu b là đc
Cho \(\Delta\)\(ABC\) có AB = AC. Kẻ BM \(\bot\) AC(M \(\in\) AC); CN \(\bot\) AB(N \(\in\) AB). Chứng minh:
a) BM = CN
b) \(\Delta\)\(AMN\) cân
Vẽ hình thì càng tốt nha (cấm sử dụng kiến thức chưa học), vi phạm = báo cáo
Cho \(\Delta\)\(ABC\) cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. Gọi I là giao điểm của MN và BC. CMR: I là trung điểm của MN
Cho ∆abc cân tại a.Trên ab và ac lần lượt lấy 2 điỉêm m vàn sao cho am =an. A)so sánh hai góc amn và abc. B)chứng minh MN/BC
Cho \(\Delta\)\(ABC\) cân tại \(A\). Gọi \(M\) là trung điểm của cạnh \(BC\). Chứng minh:
a) \(AM\) \(\bot\) \(BC\)
b) \(AM\) là tia phân giác của góc \(BAC\)
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh BN=CM
b) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Cho tam giác ABC cân tại A có \(\widehat{A}=100^0\). Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng MN // BC ?
Bài 1:Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M , trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB . Gọi I là trung điểm của đoạn thẳng MN. Chứng minh rằng ba điểm thẳng hàng B,I,C thẳng hàng
Cho tam giác ABC(AB>AC) . Qua trung điểm M của cạnh BC kẻ đường vuông góc với phân giác trong của góc A , nó cắt các cạnh AB,AC lần lượt tại D và E, biết , AD = b ,CE = c. Tính độ dài đoạn AD,CE theo b và c