Thu gọn biểu thức
1,\(\left(x-3\right)\cdot\left(x+3\right)-\left(x+1\right)^2\)
2, \(\left(2x-1\right)^2-\left(x+2\right)^2-\left(2x-\dfrac{1}{2}\right)^2\)
3,\(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)
4, \(\left(x-2\right)^3-\left(2x+3\right)^3-7\cdot\left(1-x\right)^3\)
Thu gọn biểu thức
1,\(\left(x-2\right)^3-\left(2x+3\right)^3-7\cdot\left(1-x\right)^3\)
2,\(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
3, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
Thu gọn biểu thức :
1, \(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
2, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
Khai triển biểu thức :
1, \(\left(2x-3y\right)^3\)
2, \(\left(2x+\dfrac{9}{2}\right)^3\)
3, \(\left(x+2y\right)^3+\left(x-2y\right)^3\)
4, \(\left(2x+1\right)^3-\left(x-1\right)^3-7\cdot\left(x+1\right)^3\)
Chứng minh biểu thức sau không phụ thuộc vào biến
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
Tìm x :
1, \(\left(x+1\right)^3-\left(x-1\right)^3=6\cdot\left(x+2\right)^2-9\)
2, \(\left(2x-1\right)\cdot\left(4x^2+2x+1\right)+\left(1-2x\right)^3=3\cdot\left(2x+3\right)^2\)
Tìm x :
1, \(\left(3x+2\right)^2-\left(2x-1\right)\cdot\left(2x+1\right)=5\cdot\left(x-2\right)^2\)
2, \(\left(x+2\right)^2-\left(x+3\right)\cdot\left(x-1\right)=5x\)
3, \(\left(3x-1\right)\cdot\left(x-3\right)+\left(x-2\right)^2=\left(2x-5\right)^2\)
Tìm x:
1, \(\left(x-5\right)\cdot\left(x+5\right)-\left(x+3\right)^2=2x-3\)
2,\(\left(2x+3\right)^2+\left(x-1\right)\cdot\left(x+1\right)=5\cdot\left(x+2\right)^2\)
3, \(\left(x-4\right)^3-\left(x-5\right)\cdot\left(x^2+5x+25\right)=\left(x+2\right)\cdot\left(x^2-2x+4\right)-\left(x+4\right)^3\)
Thu gọn biểu thức :
1, \(\left(x-y-z\right)^2-\left(y+z\right)^2\)
2, \(\left(2x+y\right)^2-4x\cdot\left(2x+y\right)+4x^2\)
3, \(\left(x+y\right)^2-2\cdot\left(x^2-y^2\right)+\left(x-y\right)^2\)