a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)
b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)