Đặt \(\overline{ab}=x,\overline{cd}=y,\overline{mn}=z\). Theo bài ra ta có:
\(2\left(10000x+100y+z\right)=10000y+100z+x\)
\(\Leftrightarrow20000x+200y+2z=10000y+100z+x\)
\(\Leftrightarrow19999x=9800y+98z\)
\(\Leftrightarrow19999x=98\left(100y+z\right)\)
\(\Leftrightarrow2857\overline{x}=14\left(100y+z\right)\)
\(\Leftrightarrow2857\overline{ab}=14\overline{cdmn}\)
Do đó \(2857\overline{ab}⋮14\). Mà (2857, 14) = 1 nên \(\overline{ab}⋮14\Leftrightarrow\overline{ab}\in\left\{14;28;42;56;70;84;98\right\}\)
Vì \(14\overline{cdmn}\le14.9999=139986\) nên \(\overline{ab}\le47\). Do đó \(\overline{ab}\in\left\{14;28;42\right\}\).
Đến đây thử từng TH