\(\sqrt{5}.\sqrt{45}=\sqrt{5.45}=\sqrt{225}=15\)
\(\sqrt{2,5}.\sqrt{14,4}=\sqrt{2,5.14,4}=\sqrt{36}=6\)
\(\sqrt{45.80}=\sqrt{3600}=60\)
\(\sqrt{5}.\sqrt{45}=\sqrt{5.45}=\sqrt{225}=15\)
\(\sqrt{2,5}.\sqrt{14,4}=\sqrt{2,5.14,4}=\sqrt{36}=6\)
\(\sqrt{45.80}=\sqrt{3600}=60\)
a, \(\sqrt{45.80}\)
b, \(\sqrt{75.48}\)
\(\text{Giải phương trình:}\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{2x^2+4}\)
Áp dụng quy tắc khai phương một tích, hãy tính :
a) \(\sqrt{45.80}\)
b) \(\sqrt{75.48}\)
c) \(\sqrt{90.6,4}\)
d) \(\sqrt{2,5.14,4}\)
Áp dụng quy tắc nhân các căn bậc hai, hãy tính:
a. \(\sqrt{7}.\sqrt{63};\)
b. \(\sqrt{2,5}.\sqrt{30}.\sqrt{48};\)
c. \(\sqrt{0,4}.\sqrt{6,4};\)
d. \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}.\)
Tính :
a) A= \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}\)
b) B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
c) C= \(3-\sqrt{3-\sqrt{5}}\)
Áp dụng quy tắc nhân các căn bậc hai, hãy tính :
a) \(\sqrt{10}.\sqrt{40}\)
b) \(\sqrt{5}.\sqrt{45}\)
c) \(\sqrt{52}.\sqrt{13}\)
d) \(\sqrt{2}.\sqrt{162}\)
Bài 1: Thực hiện phép tính :
a,\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
b,\(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)
c,\(\left(2\sqrt{18}-5\sqrt{32}+6\sqrt{2}\right):\sqrt{2}\)
Rút gọn:
a)\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b)\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d)\(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
Giải các pt sau: a)\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) b)\(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
1 Tính
a, \(\sqrt{0,49.169.25}\)
b,\(\dfrac{\sqrt{63}}{\sqrt{112}}\)
c, \(\sqrt{\dfrac{27}{17}}.\sqrt{11.\dfrac{5}{17}}\)
d,\(\sqrt{\left(-5\right)^2.16.225}\)
e,\(\dfrac{\sqrt{2,5}}{\sqrt{1,6}}\)