Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
\(\text{Tìm Min }\text{của}\text{ }P=\frac{x+yz}{y+z}+\frac{y+zx}{z+x}+\frac{z+xy}{x+y}\)
cho x;y là các số thực dương thỏa mãn x +y \(\ge3\) tìm giá trị nhỏ nhất của S = x+y+ \(\frac{1}{2x}+\frac{2}{y}\)
1.cho p,q nguyên tố tìm x,y ∈ N*thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
2.tìm x,y ∈ Z, p nguyên tố thỏa mãn \(x^4+4=p.y^4\)
Cho x>0 , y>0 và \(\frac{1}{\text{x}}+\frac{1}{y}\)= 1
C/m : \(\sqrt{\text{x+y}}=\sqrt{\text{x}-1}+\sqrt{y-1}\)
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(\text{Cho }\text{a,b}\ge0\text{ thỏa }x^2+4y=8.\text{Tìm Min}:\)
\(\text{A=}x+y+\frac{10}{x+y}\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho ba số dương x, y, z. Thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Cmr: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}< =1\)