Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hương-g Thảo-o

Tập xác định của hàm số \(y=\dfrac{x^2+1}{\left|2x-4\right|+\left|1+x\right|-\left|5-x\right|}\) có dạng \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\). Tìm ab

Akai Haruma
12 tháng 11 2017 lúc 11:37

Lời giải:

Ta xét các TH sau:

TH1: \(x\geq 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=x-5\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=2x+2\)

Để hàm số đc xác định thì \(2x+2\neq 0\Leftrightarrow x\neq -1\), luôn đúng với \(x\geq 5\)

TH2: \(2< x< 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=4x-8\)

Để hàm số đc xác định thì \(4x-8\neq 0\), điều này luôn đúng với \(2< x< 5\)

TH3: \(-1\leq x\leq 2\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=0\)

(Không thỏa mãn)

TH4: \(x< -1\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=-(x+1)\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=-2(x+1)\)

Để hàm số đc xác định thì \(-2(x+1)\neq 0\), điều này luôn đúng với mọi \(x< -1\)

Từ các TH trên , ta suy ra \(x\in (2; +\infty)\cup (-\infty; -1)\)

Vậy \(a=-1; b=2\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết