\(A=\left|2x+2,5\right|+\left|2x-3\right|\)\(=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)
\(\Rightarrow A\ge5,5\)
Dấu = khi \(\left(2x+2,5\right)\left(2x-3\right)\ge0\)\(\Rightarrow-1,25\le x\le1,5\)
\(\Rightarrow\begin{cases}\left(2x+2,5\right)\left(2x-3\right)=0\\-1,25\le x\le1,5\end{cases}\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-1,25\\x=1,5\end{array}\right.\)
Vậy....
GTNN = 5,5
khi x = -1; 0; 1
(đúng rồi, bạn giỏi quá)