Ba đường phân giác AD, BE, CF của tam giác ABC đồng quy tại O. Kẻ đường vuông góc OG đến BC. Chứng minh rằng \(\widehat{BOG}=\widehat{COD}\) ?
Cho tam giác ABC cân tại B có \(\widehat{B}=112^0\). Kẻ đường cao AH và đường phân giác AD của tam giác đó. Tính các góc của tam giác AHD ?
Cho tam giác ABC có \(\widehat{A}=130^0\). Gọi C', B' là các điểm sao cho AB là đường trung trực của CC' và AC là đường trung trực của BB'. Hai đường thẳng CB' và BC' cắt nhau tại A'. Hãy tìm bên trong tam giác A'BC điểm cách đều ba cạnh của tam giác đó
Gọi MH là đường cao của tam giác MNP. Chứng minh rằng
Nếu MN < MP thì HN < HP và \(\widehat{NMH}< \widehat{PMH}\) (yêu cầu xét hai trường hợp : khi góc N nhọn và khi góc N tù)
Cho tam giác ABC có AB < AC, đường cao AH.
Chứng minh rằng :
\(HB< HC,\widehat{HAB}< \widehat{HAC}\)
(Xét hai trường hợp : \(\widehat{B}\) nhọn và \(\widehat{B}\) tù )
Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
tính các góc của tam giá ABC biết
a)\(\widehat{A}=2\widehat{B}\); \(\widehat{C}-\widehat{B}=36\)
b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH . Tia phân giác của góc HAB và
HAC cắt BC lần lượt tại M và N. Chứng minh các đường phân giác của góc B, góc C và trung trực của MN đồng quy tại một điểm.
Cho ΔABC vuông tại A, biết AB = 6cm; AC = 8cm.
a) Tính độ dài cạnh BC, so sánh \(\widehat{B}\) và \(\widehat{C}\).
b) Vẽ trung tuyến AM của ΔABC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: ΔMAB = ΔMEC và \(\widehat{ACE}\) = 90 độ.
c) Gọi H là trung điểm của cạnh AC, chứng minh: HB = HE.
d) HB cắt AE tại P, HE cắt BC tại Q, chứng minh: ΔHPQ cân.