a) tam giác ABK có BE vừa là đường phân giác, vừa là đường cao. Nên
tam giác ABK cân tại B
a) tam giác ABK có BE vừa là đường phân giác, vừa là đường cao. Nên
tam giác ABK cân tại B
Cho tam giác ABC vuông tại A , phân giác BD . Kẻ AE vuông với BC ( \(E\in BD\)) AE cắt BC tại K.
a) Tam giác ABK là tam giác gì ? Vì sao?
b) Chứng minh: DK vuông với BC
c) Kẻ AH vuông với BC (\(H\in BC\)) . C/m : AK là tai phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD . C/m : IK//AC
cho tam giác ABC vuông tại A . Kẻ AH vuông góc với BC , Tia phân giác của góc HAB cắt Bc ở D . Tia phân giác của góc HAC cắt BC ở E.
a) Chứng Minh các tam giác ABE và ACD là tam giác cân
b) gọi I là giao điểm của các tia phân giác của tam giác ADE
Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB
Câu C mình thấy nhiều người là tma giác ABK cân tại B là sai nhé -_- ABK là ba điểm nhé -_- Giải giùm mình đi ; ;
Cho tam giác ABC vuông tại A (AB < AC). D thuộc tia đối của tia AC, AD=AB. E thuộc tia đối của tia AB, AE=AC
a) Chưng minh BC = DE
b) Chứng minh: Tam giác ABD vuông cân và BD song song với CE
c) Kẻ đường cao AH của tam giác ABC. AH cắt DE tại M. Kẻ AK vuông góc với MC. AK cắt BD tại N. Chứng minh NM song song với AB
d) CM AM=1/2 DE
Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA. Đường vuông góc với BC tại D cắt AC ở E
a) Chứng minh : AE=DE
b)C/m : AD là tia phân giác của góc HAC
c) So sánh : HD và DC
d) Đường phân giác góc ngoài tại đỉnh C đường thẳng BE ở K . Tính góc BAK ?
Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy D sao cho BD = BA. CMR:
a) Góc BAD = góc ADB
b) AD là phân giác của góc HAC
c) Vẽ DK vuông góc AC (K thuộc AC). CMR: AK = AH
d) AB + AC < BC + 2AH
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
Cho tam giác ABC vuông ở A, đường cao AH. Trên cạnh BC lấy điểm D sao cho: BD=BA
a) CMR: góc BAD= góc ADB
b) CMR: AD là phân giác góc HAC
c) Vẽ DK vuông góc AC(K thuộc AC). CMR: AK=AH
b) CMR: AB+AC< BC+2AH
Cho tam giác ABC vuông tại A. Phân giác của góc B cắt AC tại D. Lấy E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh: Tam giác BAD = tam giác BED
b) So sánh AD và ED, tính góc BED
c) Chứng minh: AI = EI và AE vuông góc BD.