Câu hỏi của toán khó mới hay - Toán lớp 9 - Học toán với OnlineMath
Ta có SABC=\(\dfrac{AD.BC}{2}\)
Tứ giác ABMC có AM⊥BC⇒SABMC=\(\dfrac{AM.BC}{2}\)
Suy ra \(\dfrac{S_{ABMC}}{S_{ABC}}=\dfrac{AM}{AD}\)
Chứng minh tương tự: \(\dfrac{S_{ABCN}}{S_{ABC}}=\dfrac{BN}{BE}\)
\(\dfrac{S_{ACBK}}{S_{ABC}}=\dfrac{CK}{CF}\)
Vậy \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=\dfrac{S_{ABMC}+S_{ABCN}+S_{ACBK}}{S_{ABC}}=\dfrac{S_{ABC}+S_{BMC}+S_{ABC}+S_{ANC}+S_{ABC}+S_{ABK}}{S_{ABC}}=3+\dfrac{S_{BMC}+S_{ANC}+S_{AKB}}{S_{ABC}}\)(1)
Gọi H là giao điểm của AD,BE,CF ta có
\(\widehat{MBD}=\widehat{MBC}=\widehat{MAC}\)(cùng chắn cung MC)=\(\widehat{EAH}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{HBD}\)
Lại có BD là cạnh chung
\(\widehat{BDH}=\widehat{BDM}=90^0\)
Suy ra △BHD=△BMD(cạnh huyền, góc nhọn)\(\Rightarrow HD=MD\Rightarrow S_{BMC}=\dfrac{MD.BC}{2}=\dfrac{HD.BC}{2}=S_{BHC}\)
Chứng minh tương tự: \(S_{ANC}=S_{AHC}\)
\(S_{AKB}=S_{AHB}\)
Vậy \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=3+\dfrac{S_{BMC}+S_{AKB}+S_{ANC}}{S_{ABC}}=3+\dfrac{S_{BHC}+S_{ABH}+S_{AHC}}{S_{ABC}}=3+\dfrac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)