§2. Tổng và hiệu của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang

tam giác ABC đều cạnh a,dựng hình vuông BCMN.Gọi G là trọng tâm tam giác ABC.Tính theo a độ dài vectơ u=vectơ GA+vectơ GB+vectơ GM+vecto GN

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 16:16

\(\overrightarrow{u}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GB}+\overrightarrow{BN}\)

\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{CM}+\overrightarrow{BN}=\overrightarrow{GB}+2\overrightarrow{BN}\)

G là trọng tâm \(\Rightarrow BG=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{GB}+2\overrightarrow{BN}\right|\Rightarrow\left|\overrightarrow{u}\right|^2=BG^2+4BN^2+4\overrightarrow{GB}.\overrightarrow{BN}\)

\(=\dfrac{a^2}{3}+4a^2+4.\dfrac{a\sqrt{3}}{3}.a.cos120^0=\dfrac{13-2\sqrt{3}}{3}a^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\dfrac{13-2\sqrt{3}}{3}}.a\)


Các câu hỏi tương tự
Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Duy
Xem chi tiết
Ya Ya
Xem chi tiết
VTCVân
Xem chi tiết
hoan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Hoàng
Xem chi tiết
Nguyễn Duy
Xem chi tiết
Hồ Hải Ngọc
Xem chi tiết