Cho tam giác ABC đều cạnh 3a . a, Tính| Vectơ AB + Vectơ AC | b, H là trung điểm của BC .Tính|Vectơ CA - Vectơ HC |
Cho tam giác DEF. Gọi M,N,P lần lượt là trung điểm DE,EF, FD a/ chứng minh các vectơ EP=EM+EN b/ vectơ ME+NF+PD=0 c/ vectơ DN+EP+FM=0
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC; BE cắt AM tại N. Chứng minh \(\overrightarrow{NA}\) và \(\overrightarrow{NM}\) là hai vectơ đối nhau.
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Bài 1 : Cho tam giác ABC đều cạnh a. Gọi M là trung điểm của BC. Xác định và tính theo a độ dài vectơ BM + vectơ BA
Cho tam giác ABC . Điểm I trên cạnh AC sao cho AC=4CI. J là điểm mà \(\overrightarrow{6BJ}=\overrightarrow{3AC}-\overrightarrow{4AB}\)
Hãy chọn khảng định đúng
A)\(\overrightarrow{4BI}=\overrightarrow{3AC}-\overrightarrow{4AB}\)
B) B ,I ,J thẳng hàng
C) \(\overrightarrow{CI}=\frac{1}{4}\overrightarrow{CA}\)
D) Cả 3 dáp án đều đúng
Ai làm dược trình bày luôn cách làm hộ mình nhé
Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP