Cho tam giác ABC cân tại A có d là đường trung trực AB vẽ phân giác AE của góc BAC ( E thuộc BC ) d cắt AE tại O a, AE là đường trung trực của tam giác ABC b, O thuộc đường trung trực của đoạn thẳng AC c, O cách đều 3 đỉnh của tam giác ABC
Cho góc ABC cân tại A. Vẽ AH vuông BC (H thuộc BC).
a)Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E. Chứng minh tam giác AEB cân.
b) Trên cạnh AB, AC lần lượt lấy các điểm D, F sao cho BD = AF. Chứng minh EF > DF/2
Giup mình với :(
cho tam giác ABC có góc B= 45 độ, góc C= 30 độ. Đường trung trực cạnh BC cắt cạnh AC tại D. Số đo góc ABD ???
giải giúp mình với :))
tam giác abc cân tại a có a=40 độ .đường trung trục của ab cắt đường thẳng bc ở d.trên tia đối của ad lấy điểm e sao cho ae=cd.tính các góc tam giác bde
cảm ơn
Cho tam giác ABC không vuông. Các đường trung trực của AB và AC cắt nhau tại O. Cắt đường thẳng BC theo thứ tự tại E và F. CMR:
a, OB=OC
b, Tam giác AOE = tam giác BOE và tam giác AOF = tam giác COF
Cho tam giác ABC vuông tại A, AB<AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh AB=BE.
b) Chứng minh BD là đường trung trực của AE.
c) Tia ED vắt tia BA tại điểm K. Chứng minh °DKC cân và DA<DC.
d) Chứng minh BD vuông góc với CK .
Cho ABC [ cân tại A. Vẽ AH ⊥BC ( H ∈ BC) . a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân. b) Trên các cạnh AB, AC lần lượt lấy các điểm D, F sao cho BD = AF. Chứng minh EF > DF2 . c) Trên tia đối của tia BA lấy điểm K sao cho BA = BK. CMR: CM = CK2
Cho tam giác ABC cân tại A. Vẽ AH⊥BC (H ∈ BC) . a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân.
a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân.
b) Trên các cạnh AB,AC lần lượt lấy các điểm D,F sao cho BD = AF. Chứng minh EF >
DF/2
c) Trên tia đối của tia BA lấy điểm K sao cho BA = BK. CMR: CM =
CK/2
Cho tam giác ABC (AB<AC). Trên AC xác định điểm M sao cho AM=AB. Vẽ đường trung trực của BC và MC cắt nhau tại O. CMR: OA là đường trung trực của BM.