Do O thuộc đường trung trực của MC
\(\Rightarrow MO=OC\) (1)
Do O thuộc đường trung trực của BC
\(\Rightarrow OC=OB\) 2)
Từ (1) và (2) \(\Rightarrow OM=OB\)
Lại có: \(AM=AB\)
\(\Rightarrow AO\) là đường trung trực của BM
Do O thuộc đường trung trực của MC
\(\Rightarrow MO=OC\) (1)
Do O thuộc đường trung trực của BC
\(\Rightarrow OC=OB\) 2)
Từ (1) và (2) \(\Rightarrow OM=OB\)
Lại có: \(AM=AB\)
\(\Rightarrow AO\) là đường trung trực của BM
Cho tam giác ABC cân tại A có d là đường trung trực AB vẽ phân giác AE của góc BAC ( E thuộc BC ) d cắt AE tại O a, AE là đường trung trực của tam giác ABC b, O thuộc đường trung trực của đoạn thẳng AC c, O cách đều 3 đỉnh của tam giác ABC
Cho tam giác ABC không vuông. Các đường trung trực của AB và AC cắt nhau tại O. Cắt đường thẳng BC theo thứ tự tại E và F. CMR:
a, OB=OC
b, Tam giác AOE = tam giác BOE và tam giác AOF = tam giác COF
Cho hai tam giác cân chung đáy ABC và ABD, trong đó ABC là tam giác đều. Gọi E là trung điểm của AB. Khi đó, khẳng định nào sau đây sai ?
(A) Đường thẳng CD là đường trung trực của AB
(B) Điểm E không nằm trên đường thẳng CD
(C) Đường trung trực của AC đi qua B
(D) Đường trung trực của BC đi qua A
Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại D trên cạnh BC.
Góc BAC có số đo bằng o.
Cho tam giác ABC cân tại A (góc A > 90°).Các đường trung trực của AB và AC cắt nhau tại O và cắt BC tại D và E. Chứng minh rằng:
a)OA là đường trung trực của BC
b)BD=CE
c)tam giác ODE cân
Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng :
a) D là trung điểm của cạnh BC
b) \(\widehat{A}=\widehat{B}+\widehat{C}\)
Cho tam giác ABC đều. D, E lần lượt là 2 điểm lần lượt di chuyển trên AB, AC sao cho BD=AE. CMR các đường trung trực của đoạn thẳng DE luôn đi qua 1 điểm cố định khi D, E thay đổi
Cho tam giác cân ABC có AB=AC . Hai đường trung trực của hai cạnh AB;AC
cắt nhau tại O . Chứng minh AOB=AOC .
Cho tam giác ABC cân ở A. Đường trung trực của các cạnh AB và BC cắt nhau tại M. Trên cạnh
AB, AC lấy các điểm D, E sao cho AD = CE. Chứng minh rằng MD = ME.