Cho tam giác ABC vuông ở A . Tia phân giác của góc B và góc C cắt cạnh AC và AB theo thứ tự ở D và E . Từ E kẻ EK vuông góc với BC . Từ D kẻ DH vuông góc với BC ( K, H thuộc BC ) DH kéo dài cắt AB ở I. Chứng minh
a) tam giác BAD = tam giác BHD
b) BD vuông góc IC
c) Tính số đo của góc HAK
Cho tam giác đều ABC, AB = 2a. Gọi M là trung điểm của cạnh BC.
a, Chứng minh rằng: \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
b, Tính \(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|\) theo a?
c, Tìm vị trí điểm N thỏa mãn: \(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
Cho tam giác ABC có độ dài các cạnh BC=a, AC=b, AB=c thỏa mãn \(a^4+b^4+c^4=2a^2b^2+2a^2c^2\). Tìm số đo góc \(\widehat{BAC}\)
Câu 5: Trong mặt phẳng Oxy cho 3 điểm A(1;5) . B(3;-1). C(- 1/- 1) . a) Chứng minh ba điểm A, B,C lập thành một tam giác. b) Xác định tọa dọ trọng tâm G của tam giác ABC. c) Xác định tọa độ vécttơ vec AM biết M là trung điểm của BC. d) Tính các tịch vô hưởng vec AM , vec BC , vec AC , vec BC
cho tam giác ABC có BC = a , CA = b , AB = c . Lấy một điểm M ở giữa B và C . Qua M ta kẻ các đường thẳng ME và MF lần lượt song song với các cạnh AC và AB ( E thuộc AB , F thuộc AC ) . Hỏi phải lấy điểm M cách B bao nhiêu để ME + MF = l ( l là độ dài cho trước ) . Biện luận theo l , a , b và c
a) Cho tam giác ABC vuông tại A có 2 đường trung tuyến là AM = 6 và BN = 9. Tính AB.
b) Cho tứ giác ABCD nội tiếp đường tròn đường kính AD = 4. Tính CD với AB = BC = 1.
c) Tìm a sao cho x2 + ax + 1 = 0 và x2 - x - a = 0 có nghiệm chung.
Chứng minh tam giác ABC thỏa mãn \(\left\{{}\begin{matrix}a^2=b^2+c^2-bc\\b^2=a^2+c^2-ac\end{matrix}\right.\)
thì là tam giác đều
Câu 6: Cho tam giác ABC đều, cạnh bằng 5cm. Tỉnh các tích vô hưởng vec AB . vec AC vec AB . vec BC
Cho hình thang ABCD có 2\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\). AC = 8; BD = 6 và
\(\left(\overrightarrow{AC};\overrightarrow{BD}\right)=120^0\). Khi đó giá trị của S = AD + BC là
A. \(\dfrac{13+2\sqrt{5}}{2}\)
B. \(\dfrac{14+4\sqrt{7}}{3}\)
C. \(\dfrac{15+2\sqrt{10}}{4}\)
D. \(6+4\sqrt{3}\)