a) Áp dụng tính chất đường phân giác, ta có:
\(\dfrac{{DB}}{{DC}} = \dfrac{{AB}}{{AC}} = \dfrac{{15}}{{20}} = \dfrac{3}{4}\)
Suy ra \(\dfrac{{DB}}{3} = \dfrac{{DC}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{{DB}}{3} = \dfrac{{DC}}{4} = \dfrac{{DB + DC}}{{3 + 4}} = \dfrac{{BC}}{7} = \dfrac{{75}}{7}\)
Do đó, \(DB = \dfrac{{25.3}}{7} = \dfrac{{75}}{7}\) (cm).
Vậy \(DB = \dfrac{{75}}{7}cm;DC = \dfrac{{100}}{7}cm\) cm.
b)
Hai tam giác ABD và ACD có chung đường cao kẻ từ đỉnh A đến cạnh BC, ta gọi đường cao đó là AH.
Ta có: \({S_{AB{\rm{D}}}} = \dfrac{1}{2}AH.DB;{S_{A{\rm{D}}C}} = \dfrac{1}{2}AH.DC\)
Suy ra \(\dfrac{{{S_{AB{\rm{D}}}}}}{{{S_{A{\rm{D}}C}}}} = \dfrac{{\dfrac{1}{2}AH.B{\rm{D}}}}{{\dfrac{1}{2}AH.DC}} = \dfrac{{B{\rm{D}}}}{{DC}} = \dfrac{3}{4}\)
Vậy tỉ số diện tích của hai tam giác ABD và ACD bằng \(\dfrac{3}{4}\)