Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Hương

Tại một buổi học của 1 lp học số hs vắng mặt = 1/7 số hs có mặt

Người ta nhận thấy nếu có thêm 1 hs vắng mặt nữa thì số hs vắng mặt = 1/6 số hs có mặt

Tính số hs của lp đó

Giải bài nhanh+chính xác+nêu rõ các bước = chọn

NGUYEN THI DIEP
17 tháng 3 2017 lúc 14:14

GIẢI:

Gọi số học sinh vắng mặt là: x(học sinh) ; ĐK: x>0.(*)

Gọi số học sinh có mặt là: y(học sinh) ; ĐK: y>0.(**)

Theo đề bài số học sinh vắng mặt bằng \(\dfrac{1}{7}\)số học sinh có mặt, nên ta có :

x =\(\dfrac{1}{7}\) y (1)

Theo bài ra nếu có thêm 1 học sinh vắng mặt nữa thì số học sinh vắng mặt bằng \(\dfrac{1}{6}\)số học sinh có mặt , nên ta có:

(x + 1) =\(\dfrac{1}{6}\) y (2)

Từ (1) và (2), ta có hệ phương trình :

\(\left\{{}\begin{matrix}x=\dfrac{1}{7}y\\x+1=\dfrac{1}{6}y\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{7}y\\\dfrac{1}{7}y+1=\dfrac{1}{6}y\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{7}y\\\dfrac{1}{7}y-\dfrac{1}{6}y=-1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{7}y\\\dfrac{-1}{42}y=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{7}y\\y=42\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{7}\times42=6\\y=42\end{matrix}\right.\)(thỏa mãn(*)và(**))

Vậy số học sinh vắng mặt là: 6 (học sinh).

số học sinh có mặt là: 42 (học sinh).

Nên số học sinh của lớp đó là: 6+42= 48 (học sinh).

Đáp số : 48( học sinh).


Các câu hỏi tương tự
Đỗ Hương
Xem chi tiết
Mai Phô
Xem chi tiết
Khánh Linh
Xem chi tiết
lu nguyễn
Xem chi tiết
Tâm Lê
Xem chi tiết
Doctor Strange
Xem chi tiết
lu nguyễn
Xem chi tiết
Sawada Tsuna Yoshi
Xem chi tiết
Lương Minh THảo
Xem chi tiết