\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Giải phương trình:
\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{7+x+6\sqrt{x-2}}=2\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)
giải phương trình
a)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b)\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
\(\sqrt{2x-5}+2\sqrt{7-x}=\sqrt{3}x^2-8\sqrt{3x}+19\sqrt{3}\)
Rút gọn:
a, A = \(\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\)
b, B = \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
c, C = \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
d, D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x ≥ 2
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Tìm Min và Max(nếu có)
A=2x-\(\sqrt{x}\)
B=x+\(\sqrt{x}\)
C=1+\(\sqrt{2-x}\)
D=\(\sqrt{-x^2+2x+5}\)
E=\(\dfrac{1}{2x-\sqrt{x}+3}\)
F=\(\dfrac{1}{3-\sqrt{1-x^2}}\)
Giải phương trình:
a. \(\sqrt{x^2+2x+1}=9\)
b. \(\sqrt{1-4x+4x^2}=5\)
c. \(\sqrt{x^2-2x\sqrt{2}+2}=5\)
d. \(\sqrt{4x^2-4x+1}-\sqrt{9x^2}=0\)
e. \(\sqrt{x^2-2x+1}-\sqrt{3+2\sqrt{2}}=0\)
Giair pt sau:
a, \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
b, \(\sqrt{x^2-9x+24}-\sqrt{6x^2-59x+149}=5-x\)
c, \(2x^2+4x+3\sqrt{3-2x-x^2}=1\)