Đặt S = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{8-2\sqrt{10-2\sqrt{5}}}\)
S2 = 8 + 2\(\sqrt{10+2\sqrt{5}}\) + \(8-2\sqrt{10+2\sqrt{5}}\) + 2\(\times\)\(\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
= 16 + \(2\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)
= 16 + 2 \(\sqrt{64-40+8\sqrt{5}}\)
= 16 + 2\(\sqrt{20+2\times2\sqrt{5}\times2+4}\)
= 16 + 2\(\sqrt{\left(\sqrt{20}+2\right)^2}\)
= 16 + 2\(\sqrt{20}-4\)
= 12 + 2\(\sqrt{20}\)
Do S > 0 nên
S = \(\sqrt{12+2\sqrt{20}}\)= \(\sqrt{12+2\times2\sqrt{5}}\)=\(\sqrt{4\left(3+\sqrt{5}\right)}\)=\(2\sqrt{3+\sqrt{5}}\)
Vậy S = 2\(\sqrt{3+\sqrt{5}}\)