Rút gọn: C= \(\sqrt{4+5-\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
Rút gọn:
\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
giúp mk tính
a,\(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b,(\(\sqrt{5}+\sqrt{2}\)) (\(3\sqrt{2}-1\))
c,\(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
d, \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e, \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
f, \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
bài 2
a, \(\sqrt{9-4\sqrt{5}}\)
b,\(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
c\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
d, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
e,\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)+\(\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
f, \(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn biểu thức:
\(a,\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
❤ Tính:
a) \(\sqrt{5-\sqrt{21}}-\sqrt{5+\sqrt{21}}\)
b)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
c)\(\sqrt{7+\sqrt{24}}+\sqrt{31-\sqrt{600}}\)
d)\(\sqrt{28-\sqrt{300}}+\sqrt{4-\sqrt{12}}\)
e)\(\sqrt{7-\sqrt{40}}-\sqrt{5-\sqrt{24}}-\sqrt{6-\sqrt{20}}\)
f)\(\sqrt{48-10\sqrt{7+\sqrt{48}}}\)
g) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{15}-\sqrt{16}}\)
Bài 1: CMR các biểu thức sau là một số nguyên
a)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b)\(B=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{21}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18}-\sqrt{128}}}}\)
Rút gọn
a,\(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
b,\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
c,\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)