\(\sqrt{4x^2}+\sqrt{x^2-6x+9}\\ =\sqrt{\left(2x\right)^2}+\sqrt{\left(x-3\right)^2}\\ =2\left|x\right|+\left|x-3\right|\\ =2x+x-3\left(vìx>3\right)\\ =3x-3=3\left(x-1\right)\)
\(\sqrt{4x^2}+\sqrt{x^2-6x+9}\\ =\sqrt{\left(2x\right)^2}+\sqrt{\left(x-3\right)^2}\\ =2\left|x\right|+\left|x-3\right|\\ =2x+x-3\left(vìx>3\right)\\ =3x-3=3\left(x-1\right)\)
d) \(\sqrt{x^2-12x+36}-x=3\)
e) \(\sqrt{x^2-4x+5}-1=x\)
f) \(\sqrt{x^2-6x+9}+x=3\)
h) \(\sqrt{18x}+\sqrt{32x}-14=0\)
k) \(\sqrt{6x-3}+2=\sqrt{3}\)
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
-tìm x-
1, \(\sqrt{4-4x+x^2}=3\)
2, \(\sqrt{x^2-6x+9}=1\)
3, \(\sqrt{25-10x+x^2}=1\)
Rút gọn các biểu thức sau:
\(4x-\sqrt{x^2-4x+4}\) với x ≥ 2
\(3x+\sqrt{9+6x+x^2}\) với x < - 3
\(\frac{x^2+6\sqrt{x}+9}{x^2-3}\) với x ≥ 0 và x ≠ 9
\(\frac{\sqrt{x^2+4x+4}}{x+2}\) với x ≠ -2
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
2: Giải phương trình a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
BT1: Rút gọn:
A=\(\dfrac{3x}{x-2}\sqrt{4-4x+4}vớix>2\)
B=\(\dfrac{-5y}{x+3}\sqrt{x^2+6x+9}vớix\ne-3\)
giải các phương trình
a/\(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b/\(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c/\(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d/\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
Rút gọn
a) A= 2x + \(\sqrt{x^2-4x+1}\)
b) B=\(\sqrt{x}-\sqrt{\left(1+\sqrt{x}\right)^2}\)
c) C=\(\sqrt{x}+\sqrt{\left(x-2\right)^2}\)
d)D=\(\sqrt{x^2-6x+9+x-1}\) với x<3