giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)
2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)
3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)
5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)
6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)
7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)
8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
9. \(x^2+6x+8=3\sqrt{x+2}\)
10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)
11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)
12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)
13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)
15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)
16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)
17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)
18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)
19. \(x^4+x^2-20=0\)
20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)
21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)
22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)
23. \(x^2+6x+5=\sqrt{x+7}\)
24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)
25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)
26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)
29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
Giải phương trình:
a) \(\sqrt{x+2}=\sqrt{2x+1}+x\sqrt{x+2}\)
b) \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-1}\)
d) \(1+\sqrt{x^2+4x}=\sqrt{x^2-3x+3}+\sqrt{2x^2+x+2}\)
e) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
f) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
g) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
h) \(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}+\sqrt{2x^2+4x-3}\)
giải pt
a) \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
b) \(\sqrt[3]{x-9}+2x^2+3x=\sqrt{5x-1}+1\)
c) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
d) \(\sqrt{x+1}-2\sqrt{4-x}=\frac{5\left(x-3\right)}{\sqrt{2x^2+18}}\)
e) \(x^3+5x^2+6x=\left(x+2\right)\left(\sqrt{2x+2}+\sqrt{5-x}\right)\)
giải pt
a) \(\sqrt{x+1}+1=4x^2+\sqrt{3x}\)
b) \(3\left(2+\sqrt{x-2}\right)=2x+\sqrt{x+6}\)
c) \(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
e) \(\sqrt[3]{x^2-x-1}+x^2+2=\sqrt[3]{2x-3}+3x\)
giải dùm mình với ạ <3
1. \(\sqrt{x+2}+x^2-x-2\le\sqrt{3x-2}\)
2. \(\sqrt{2x+1}+\sqrt[4]{2x-1}< \sqrt{x-1}+\sqrt{x^2-2x+3}\)
3. \(\sqrt[3]{3-2x}+\frac{5}{\sqrt{2x-1}}-2x\le6\)
4. \(\left(x+3\right)\sqrt{x+1}+\left(x-3\right)\sqrt{1-x}+2x=0\)
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
giải pt
a) \(x^2+2x+\left(x-2\right)\sqrt{x^2+2x-6}=6\)
b) \(x^3-7x\sqrt{x^2-x+2}=8-14\sqrt{x^2+2x-2}\)
c) \(\sqrt{\left(x^2+x\right)^2+2x^2+2x}=\left(3-x\right)\sqrt{x^2+x}\)
d) \(x^2+3x+3=3x\left(\sqrt{x^2+3x+4}+1\right)\)
e) \(2x^2-9x+1=2\left(\sqrt{3x^2-9x+1}+x\right)\)
giải pt
a) \(\sqrt{x^2+2}+\sqrt{x^2+7}=\sqrt{x^2+x+3}+\sqrt{x^2+x+8}\)
b) \(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\)
d) \(\sqrt{x+7}+\sqrt{4x+1}=\sqrt{5x+6}+2\sqrt{2x+3}\)
e) \(\sqrt{x+4+2\sqrt{x+3}}=x+4\)