Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải pt

a) \(x^2+2x+\left(x-2\right)\sqrt{x^2+2x-6}=6\)

b) \(x^3-7x\sqrt{x^2-x+2}=8-14\sqrt{x^2+2x-2}\)

c) \(\sqrt{\left(x^2+x\right)^2+2x^2+2x}=\left(3-x\right)\sqrt{x^2+x}\)

d) \(x^2+3x+3=3x\left(\sqrt{x^2+3x+4}+1\right)\)

e) \(2x^2-9x+1=2\left(\sqrt{3x^2-9x+1}+x\right)\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 23:15

a/ ĐKXĐ: \(x^2+2x-6\ge0\)

\(\Leftrightarrow x^2+2x-6+\left(x-2\right)\sqrt{x^2+2x-6}=0\)

\(\Leftrightarrow\sqrt{x^2+2x-6}\left(\sqrt{x^2+2x-6}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-6}=0\left(1\right)\\\sqrt{x^2+2x-6}=2-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-6=0\Rightarrow x=-1\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2+2x-6=\left(2-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\6x=10\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{3}\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 23:31

Câu b nhìn ko ra hướng, ko biết đề có nhầm đâu ko :(

c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x^2+x\right)\left(x^2+x+2\right)}-\left(3-x\right)\sqrt{x^2+x}=0\)

\(\Leftrightarrow\sqrt{x^2+x}\left(\sqrt{x^2+x+2}-3+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\left(1\right)\\\sqrt{x^2+x+2}=3-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)

d/

Ta có \(\sqrt{x^2+3x+4}=\sqrt{\left(x+\frac{3}{4}\right)^2+\frac{7}{4}}>1\)

\(\Rightarrow\sqrt{x^2+3x+4}-1>0\)

Nhân 2 vế của pt với \(\sqrt{x^2+3x+4}-1\)

\(\left(\sqrt{x^2+3x+4}-1\right)\left(x^2+3x+3\right)=3x\left(x^2+3x+3\right)\)

\(\Leftrightarrow\left(x^2+3x+3\right)\left(\sqrt{x^2+3x+4}-1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+3=0\left(vn\right)\\\sqrt{x^2+3x+4}=3x+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x^2+3x+4=\left(3x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow8x^2+3x-3=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{105}}{6}\\x=\frac{-3-\sqrt{105}}{6}\left(l\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 23:40

e/ ĐKXĐ: \(3x^2-9x+1\ge0\)

\(\Leftrightarrow3x^2-9x+1-x^2=2\left(\sqrt{3x^2-9x+1}+x\right)\)

\(\Leftrightarrow\left(\sqrt{3x^2-9x+1}+x\right)\left(\sqrt{3x^2-9x+1}+x\right)=2\left(\sqrt{3x^2-9x+1}+x\right)\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{3x^2-9x+1}+x=0\left(1\right)\\\sqrt{3x^2-9x+1}-x=2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{3x^2-9x+1}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\3x^2-9x+1=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le0\\2x^2-9x+1=0\end{matrix}\right.\) \(\Rightarrow x=\frac{9\pm\sqrt{73}}{4}\left(l\right)\)

\(\left(2\right)\Leftrightarrow\sqrt{3x^2-9x+1}=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3x^2-9x+1=\left(x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\2x^2-13x-3=0\end{matrix}\right.\)

\(\Rightarrow x=\frac{13\pm\sqrt{193}}{4}\)

Nguyễn Việt Lâm
1 tháng 10 2019 lúc 23:51

b/ ĐKXĐ: \(x^2+2x-2\ge0\)

\(\Leftrightarrow x^3-8-7x\sqrt{x^2+2x-2}+14\sqrt{x^2+2x-2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-7\sqrt{x^2+2x-2}\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-7\sqrt{x^2+2x-2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x^2+2x+4-7\sqrt{x^2+2x-2}=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\sqrt{x^2+2x-2}=a\ge0\Rightarrow x^2+2x=a^2+2\)

\(\left(1\right)\Leftrightarrow a^2+2+4-7a=0\)

\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-2}=1\\\sqrt{x^2+2x-2}=6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^2+2x-2=1\\x^2+2x-2=36\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2+2x-38=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=-1\pm\sqrt{39}\end{matrix}\right.\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Hoàng
Xem chi tiết
Ex Crush
Xem chi tiết
Nguyễn Nguyên
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết