đặt \(\sqrt[3]{2-x}=a;\sqrt[3]{7+x}=b\rightarrow a^3+b^3=9\)
thay vào pt ta đc
\(a^2+b^2-ab=\dfrac{\left(a^3+b^3\right)}{3}\)
\(a^2+b^2-ab=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{3}\)
do \(a^2+b^2-ab>0\)nên
a+b=3
\(\rightarrow\sqrt[3]{2-x}+\sqrt[3]{7+x}=3\)
\(\left(\sqrt[3]{2-x}+\sqrt[3]{7+x}\right)^3=27\)
\(2=\sqrt[3]{\left(7+x\right)\left(2-x\right)}\)
0=6-5x-x^2 đến đấy khá đơn giản rồi nhỉ
(x-1)(x+6)=0
vậy pt có nghiệm x=1;x=-6
Lời giải:
Đặt \(\sqrt[3]{2-x}=a; \sqrt[3]{7+x}=b(*)\). Ta có hệ phương trình:
\(\left\{\begin{matrix} a^3+b^3=9\\ a^2+b^2-ab=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (a+b)(a^2-ab+b^2)=9\\ a^2+b^2-ab=3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2-ab=3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-3ab=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Theo định lý Viete đảo thì $a,b$ là nghiệm của pt:
\(x^2-3x+2=0\), do đó \((a,b)=(1,2)\) hoặc \((a,b)=(2,1)\)
Thay vào $(*)$ suy ra $x=1$ hoặc $x=-6$