\(=\frac{1}{2}\left(\sqrt[3]{40+16\sqrt{13}}+\sqrt[3]{40-16\sqrt{13}}\right)\)
\(=\frac{1}{2}\left(\sqrt[3]{\left(\sqrt{13}+1\right)^3}+\sqrt[3]{\left(1-\sqrt{13}\right)^3}\right)\)
\(=\frac{1}{2}\left(\sqrt{13}+1+1-\sqrt{13}\right)=1\)
\(=\frac{1}{2}\left(\sqrt[3]{40+16\sqrt{13}}+\sqrt[3]{40-16\sqrt{13}}\right)\)
\(=\frac{1}{2}\left(\sqrt[3]{\left(\sqrt{13}+1\right)^3}+\sqrt[3]{\left(1-\sqrt{13}\right)^3}\right)\)
\(=\frac{1}{2}\left(\sqrt{13}+1+1-\sqrt{13}\right)=1\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\)
Thực hiện phép tính:
A=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right).\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right).\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
B=\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
C=\(\left(\sqrt{3}-\sqrt{2}\right).\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Thu gọn biểu thức:
\(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(B=\sqrt{\left(1-\sqrt{2020}\right)^2}.\sqrt{2021+2\sqrt{2020}}\)
\(C=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
tính: \(\sqrt{5-\sqrt{13+2\sqrt{11}}}-\sqrt{5+\sqrt{13+2\sqrt{11}}}\)
thực hiện phép tính
a)\(\sqrt{80}-\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{3\dfrac{1}{5}}\)
b)\(\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\dfrac{3+6\sqrt{3}}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}\)
Giải pt
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Giải pt
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
Tính
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)