giải các hệ phương trình sau :
\(\frac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}=\frac{7-x}{\sqrt{x-3}}\)
\(\sqrt{x}+\sqrt{\frac{x^3+1}{x}}=\sqrt{x+1}+\sqrt{x^2-x+1}\)
\(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
giải pt
a) \(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+8-6\sqrt{x-1}}=1-x\)
b) \(\sqrt{x\sqrt{x-1}-2x+2}+\sqrt{\left(x+3\right)\sqrt{x-1}-4x+4}=\sqrt{x-1}\)
c) \(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)
d) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
\begin{cases}
x+\sqrt{x(x^2-3x+3)}=\sqrt[3]{y+2}+\sqrt{y+3}+1 & \\
3\sqrt{x-1}-\sqrt{x^2-6x+6}=\sqrt[3]{y+2}+1
\end{cases}
\begin{cases}
y^2+x^3-x^2+2\sqrt[3]{y^4}+\sqrt[3]{y^2}=2x\sqrt{x-1}(y+\sqrt[3]{y}) & \\
y^4+\sqrt{y^3-y^2+1}=y(x-1)^3+1
\end{cases}
Giải phương trình:
a) \(\sqrt{x+2}=\sqrt{2x+1}+x\sqrt{x+2}\)
b) \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-1}\)
d) \(1+\sqrt{x^2+4x}=\sqrt{x^2-3x+3}+\sqrt{2x^2+x+2}\)
e) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
f) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
g) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
h) \(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}+\sqrt{2x^2+4x-3}\)
giải pt
a) \(\sqrt{x+1}+\sqrt{x}+2\sqrt{x^2+x}=1-2x\)
b) \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
c) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
d) \(2\sqrt{x}\left(\sqrt{x+1}-2\sqrt{x}\right)+\sqrt{x+1}+\sqrt{x}=1-6x\)
e) \(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
giải pt
a) \(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(\sqrt{2x+3}-\sqrt{4-x}\right)^2-10\)
b) \(\sqrt{4x+1}+2\sqrt{1-x}+10\sqrt{-4x^2+3x+1}=13\)
c) \(\left(x^2+1\right)^2=13-x\sqrt{2x^2+4}\)
d) \(\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{1}{\sqrt{x+1}-\sqrt{x-1}}\)
e) \(\left(\frac{2x-3}{\sqrt{x^2-1}}+2\right)\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)=\frac{1}{x^2-1}\)
giải pt
a) \(x+\sqrt{x+8}\left(1-\sqrt{x+8}\right)=\sqrt{x}+\sqrt{x+3}-8\)
b) \(2\left(2-x\right)=\sqrt{2x-4}\left(\sqrt{5-x}-\sqrt{3x-3}\right)\)
c) \(\sqrt[3]{24+x}.\sqrt{12-x}-6\sqrt{12-x}=x-12\)
d) \(\frac{x-1}{2\sqrt{3-2x}-3}=\frac{x-1}{3-2\sqrt[3]{5+3x}}\)
giải pt
a) \(2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{5x-2}{x}\)
b) \(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{5x-3}{2x}+9\)
c) \(\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{12-9x}{x}+6\)
d) \(\frac{x-1}{x}-2\sqrt{\frac{x-1}{x}}=3\)
e) \(\sqrt{\frac{x}{x-1}}+\sqrt{\frac{x-1}{x}}=\frac{3}{\sqrt{2}}\)
f) \(\sqrt{x-\frac{1}{x}}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
giải dùm mình với ạ <3
1. \(\sqrt{x+2}+x^2-x-2\le\sqrt{3x-2}\)
2. \(\sqrt{2x+1}+\sqrt[4]{2x-1}< \sqrt{x-1}+\sqrt{x^2-2x+3}\)
3. \(\sqrt[3]{3-2x}+\frac{5}{\sqrt{2x-1}}-2x\le6\)
4. \(\left(x+3\right)\sqrt{x+1}+\left(x-3\right)\sqrt{1-x}+2x=0\)