So sánh (làm bằng cách tự luận):
\(\sqrt[3]{7}+\sqrt{15}và\sqrt{10}+\sqrt[3]{28}\)
Hãy so sánh các cặp số sau :
a) \(\sqrt{17}\) và \(\sqrt[3]{28}\)
b) \(\sqrt[4]{13}\) và \(\sqrt[5]{23}\)
c) \(\left(\dfrac{1}{3}\right)^{\sqrt{3}}\) và \(\left(\dfrac{1}{3}\right)^{\sqrt{2}}\)
d) \(4^{\sqrt{5}}\) và \(4^{\sqrt{7}}\)
Hãy so sánh mỗi số sau với 1 :
a) \(2^{-2}\)
b) \(\left(0,013\right)^{-1}\)
c) \(\left(\dfrac{2}{7}\right)^5\)
d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}\)
e) \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}\)
g) \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}\)
Tính :
a) \(2^{2-3\sqrt{5}}.8^{\sqrt{5}}\)
b) \(3^{1+2\sqrt[3]{2}}:9^{\sqrt[3]{2}}\)
c) \(\dfrac{10^{2+\sqrt{7}}}{2^{2+\sqrt{7}}.5^{1+\sqrt{7}}}\)
d) \(\left(4^{2\sqrt{3}}-4^{\sqrt{3}-1}\right).2^{-2\sqrt{3}}\)
So sánh a,b biết:
\(\left(\sqrt{5}-2\right)^a>\left(\sqrt{5}+2\right)^b\)
Cho a, b là những số thực dương. Rút gọn các biểu thức sau:
\(a)\ \dfrac{a^{\dfrac{4}{3}}(a^{\dfrac{-1}{3}}+a^{\dfrac{2}{3}})}{a^{\dfrac{1}{4}}(a^{\dfrac{3}{4}}+a^{\dfrac{-1}{4}})}\)
\(b)\ \dfrac{b^{\dfrac{1}{5}} (\sqrt[5]{b^4}-\sqrt[5]{b^{-1}})}{b^{\dfrac{2}{3}}(\sqrt[3]{b}-\sqrt[3]{b^{-2}})}\)
\(c)\ \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{-1}{3}}-a^{\dfrac{-1}{3}}b^{\dfrac{1}{3}}}
{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)
\(d)\ \dfrac{a^{\dfrac{1}{3}} \sqrt{b}+b^{\dfrac{1}{3}} \sqrt{a}}
{\sqrt[6]{a}+\sqrt[6]{b}}\)
Chứng minh rằng:
\(a)\ (\dfrac{1}{3})^{2\sqrt{5}}<(\dfrac{1}{3})^{3\sqrt{2}}\)
\(b)\ 7^{\sqrt[6]{3}}<7^{\sqrt[3]{6}}\)
Cho a và b là các số dương. Đơn giản các biểu thức sau :
a) \(\dfrac{a^{\dfrac{4}{3}}\left(a^{-\dfrac{1}{3}}+a^{\dfrac{2}{3}}\right)}{a^{\dfrac{1}{4}}\left(a^{\dfrac{3}{4}}+a^{-\dfrac{1}{4}}\right)}\)
b) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\)
c) \(\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(a^{\dfrac{2}{3}}+b^{\dfrac{2}{3}}-\sqrt[3]{ab}\right)\)
d) \(\left(a^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}\right):\left(2+\sqrt[3]{\dfrac{a}{b}}+\sqrt[3]{\dfrac{b}{a}}\right)\)
Rút gọn các biểu thức sau :
a) \(A=\left(0,04\right)^{-1,5}-\left(0,125\right)^{\frac{-2}{3}}\)
b) \(B=\left(6^{\frac{-2}{7}}\right)^{-7}-\left[\left(\left(0,2\right)^{0,75}\right)^{-4}\right]\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\left(a,b>0\right)\)